Search results for "transfer learning"

showing 10 items of 10 documents

Improving Small Molecule pKa Prediction Using Transfer Learning With Graph Neural Networks

2022

Enumerating protonation states and calculating microstate pKa values of small molecules is an important yet challenging task for lead optimization and molecular modeling. Commercial and non-commercial solutions have notable limitations such as restrictive and expensive licenses, high CPU/GPU hour requirements, or the need for expert knowledge to set up and use. We present a graph neural network model that is trained on 714,906 calculated microstate pKa predictions from molecules obtained from the ChEMBL database. The model is fine-tuned on a set of 5,994 experimental pKa values significantly improving its performance on two challenging test sets. Combining the graph neural network model wit…

Graph Neural Network (GNN)PKAGeneral Chemistrytransfer learningprotonation statesphysical propertiesFrontiers in Chemistry
researchProduct

Deep Generative Model-Driven Multimodal Prostate Segmentation in Radiotherapy

2019

Deep learning has shown unprecedented success in a variety of applications, such as computer vision and medical image analysis. However, there is still potential to improve segmentation in multimodal images by embedding prior knowledge via learning-based shape modeling and registration to learn the modality invariant anatomical structure of organs. For example, in radiotherapy automatic prostate segmentation is essential in prostate cancer diagnosis, therapy, and post-therapy assessment from T2-weighted MR or CT images. In this paper, we present a fully automatic deep generative model-driven multimodal prostate segmentation method using convolutional neural network (DGMNet). The novelty of …

FOS: Computer and information sciencesComputer scienceComputer Vision and Pattern Recognition (cs.CV)medicine.medical_treatmentProstate segmentationFeature extractionComputer Science - Computer Vision and Pattern RecognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONConvolutional neural network[SDV.IB.MN]Life Sciences [q-bio]/Bioengineering/Nuclear medicineConvolutional neural network030218 nuclear medicine & medical imaging03 medical and health sciencesProstate cancer0302 clinical medicineFOS: Electrical engineering electronic engineering information engineeringmedicineSegmentationArtificial neural networkbusiness.industryDeep learningImage and Video Processing (eess.IV)NoveltyDeep learningPattern recognitionElectrical Engineering and Systems Science - Image and Video Processingmedicine.diseaseTransfer learning3. Good healthRadiation therapyGenerative model030220 oncology & carcinogenesisEmbeddingArtificial intelligencebusinessCTMRI
researchProduct

Color and multispectral image processing for the detection of inflammatory lesions of the stomach

2019

The work presented in this manuscript is part of the ANR project EMMIE. This project aims to develop an innovative multimodal system for the detection of inflammatory lesions in the stomach. To this purpose, a prototype has been developed to be able to acquire NBI endoscopic images and multispectral images during human's antrum exploration. The prototype is made of a standard endoscope and multispectral images.The prototype can acquire two types of data: NBI images and spectra. These two modalities are processed independently. Common image processing features are used to recognize four kind of diseases: active gastritis, chronic gastritis, metaplasia and atrophy. In addition, visual based f…

Machine LearningNarrow Band Imaging and multispectral imaging[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV]Classification des lésions de l'estomacApprentissage par transfertClassification of stomach lesionsInverse problem and optimizationApprentissage superviséTransfer LearningEndoscopie digestiveProblèmes inverses et optimisationDigestive endoscopyImagerie NBI et multispectrale
researchProduct

An attention-based weakly supervised framework for spitzoid melanocytic lesion diagnosis in whole slide images

2021

[EN] Melanoma is an aggressive neoplasm responsible for the majority of deaths from skin cancer. Specifically, spitzoid melanocytic tumors are one of the most challenging melanocytic lesions due to their ambiguous morphological features. The gold standard for its diagnosis and prognosis is the analysis of skin biopsies. In this process, dermatopathologists visualize skin histology slides under a microscope, in a highly time-consuming and subjective task. In the last years, computer-aided diagnosis (CAD) systems have emerged as a promising tool that could support pathologists in daily clinical practice. Nevertheless, no automatic CAD systems have yet been proposed for the analysis of spitzoi…

Skin NeoplasmsComputer scienceBiopsyMedicine (miscellaneous)CADInductive transfer learningConvolutional neural networkInductive transferArtificial IntelligenceTEORIA DE LA SEÑAL Y COMUNICACIONESBiopsyAttention convolutional neural networkmedicineHumansDiagnosis Computer-AssistedMelanomaMicroscopymedicine.diagnostic_testbusiness.industryMultiple instance learningMelanomaDeep learningHistopathological whole-slide imagesPattern recognitionGold standard (test)medicine.diseaseSpitzoid lesionsArtificial intelligenceSkin cancerbusinessArtificial Intelligence in Medicine
researchProduct

RNN- and LSTM-Based Soft Sensors Transferability for an Industrial Process

2021

The design and application of Soft Sensors (SSs) in the process industry is a growing research field, which needs to mediate problems of model accuracy with data availability and computational complexity. Black-box machine learning (ML) methods are often used as an efficient tool to implement SSs. Many efforts are, however, required to properly select input variables, model class, model order and the needed hyperparameters. The aim of this work was to investigate the possibility to transfer the knowledge acquired in the design of a SS for a given process to a similar one. This has been approached as a transfer learning problem from a source to a target domain. The implementation of a transf…

Computational complexity theoryProcess (engineering)Computer sciencesulfur recovery unit02 engineering and technologytransfer learningMachine learningcomputer.software_genrelcsh:Chemical technologyBiochemistryRNNField (computer science)ArticleAnalytical ChemistryDomain (software engineering)0202 electrical engineering electronic engineering information engineeringlcsh:TP1-1185Electrical and Electronic EngineeringInstrumentationsystem identificationHyperparameterbusiness.industry020208 electrical & electronic engineeringdynamical modelsSystem identificationAtomic and Molecular Physics and OpticsNonlinear systemRecurrent neural networksoft sensors020201 artificial intelligence & image processingArtificial intelligenceTransfer of learningbusinessLSTMcomputerDynamical models; LSTM; RNN; Soft sensors; Sulfur recovery unit; System identification; Transfer learningSensors
researchProduct

A Deep Learning Model for Automatic Sleep Scoring using Multimodality Time Series

2021

Sleep scoring is a fundamental but time-consuming process in any sleep laboratory. Automatic sleep scoring is crucial and urgent to help address the increasing unmet need for sleep research. Therefore, this paper aims to develop an end-to-end deep learning architecture using raw polysomnographic recordings to automate sleep scoring. The proposed model adopts two-dimensional convolutional neural networks (2D-CNN) to automatically learn features from multi-modality signals, together with a "squeeze and excitation" block for recalibrating channel-wise feature responses. The learnt representations are finally fed to a softmax classifier to generate predictions for each sleep stage. The model pe…

aikasarjatComputer science02 engineering and technologytransfer learningMachine learningcomputer.software_genreConvolutional neural networkuni (lepotila)polysomnography0202 electrical engineering electronic engineering information engineeringSleep researchFeature (machine learning)aivotutkimusBlock (data storage)multimodality analysissignaalinkäsittelybusiness.industryunitutkimusDeep learningSleep laboratorySIGNAL (programming language)deep learningsignaalianalyysi020206 networking & telecommunicationsautomatic sleep scoringkoneoppiminen020201 artificial intelligence & image processingArtificial intelligenceSleep (system call)businesscomputer2020 28th European Signal Processing Conference (EUSIPCO)
researchProduct

Recommending Serendipitous Items using Transfer Learning

2018

Most recommender algorithms are designed to suggest relevant items, but suggesting these items does not always result in user satisfaction. Therefore, the efforts in recommender systems recently shifted towards serendipity, but generating serendipitous recommendations is difficult due to the lack of training data. To the best of our knowledge, there are many large datasets containing relevance scores (relevance oriented) and only one publicly available dataset containing a relatively small number of serendipity scores (serendipity oriented). This limits the learning capabilities of serendipity oriented algorithms. Therefore, in the absence of any known deep learning algorithms for recommend…

ta113recommender systemInformation retrievalTraining setArtificial neural networkComputer sciencebusiness.industrySerendipityDeep learningsuosittelujärjestelmätdeep learning020207 software engineeringserendipity02 engineering and technologyRecommender systemtransfer learningalgorithmskoneoppiminenalgoritmit0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingRelevance (information retrieval)Artificial intelligenceTransfer of learningbusiness
researchProduct

Transfer Learning of Deep Learning Models for Cloud Masking in Optical Satellite Images

2023

Los satélites de observación de la Tierra proporcionan una oportunidad sin precedentes para monitorizar nuestro planeta a alta resolución tanto espacial como temporal. Sin embargo, para procesar toda esta cantidad creciente de datos, necesitamos desarrollar modelos rápidos y precisos adaptados a las características específicas de los datos de cada sensor. Para los sensores ópticos, detectar las nubes en la imagen es un primer paso inevitable en la mayoría de aplicaciones tanto terrestres como oceánicas. Aunque detectar nubes brillantes y opacas es relativamente fácil, identificar automáticamente nubes delgadas semitransparentes o diferenciar nubes de nieve o superficies brillantes es mucho …

machine learningflood detectioncloud maskingtransfer learningUNESCO::CIENCIAS TECNOLÓGICAS
researchProduct

Optimization and sensitivity analysis of existing deep learning models for pavement surface monitoring using low-quality images

2022

Automated pavement distress detection systems have become increasingly sought after by road agencies to in crease the efficiency of field surveys and reduce the likelihood of insufficient road condition data. However, many modern approaches are developed without practical testing using real-world scenarios. This paper ad dresses this by practically analyzing Deep Learning models to detect pavement distresses using French Secondary road surface images, given the issues of limited available road condition data in those networks. The study specifically explores several experimental and sensitivity-testing strategies using augmentation and hyper- parameter case studies to bolster practical mode…

Control and Systems EngineeringSettore ICAR/04 - Strade Ferrovie Ed AeroportiDeep learningMonitoring pavement surfacesBuilding and ConstructionCivil and Structural EngineeringTransfer learningPavement distressePavement management system
researchProduct

Machine learning at the interface of structural health monitoring and non-destructive evaluation

2020

While both non-destructive evaluation (NDE) and structural health monitoring (SHM) share the objective of damage detection and identification in structures, they are distinct in many respects. This paper will discuss the differences and commonalities and consider ultrasonic/guided-wave inspection as a technology at the interface of the two methodologies. It will discuss how data-based/machine learning analysis provides a powerful approach to ultrasonic NDE/SHM in terms of the available algorithms, and more generally, how different techniques can accommodate the very substantial quantities of data that are provided by modern monitoring campaigns. Several machine learning methods will be illu…

Damage detectionComputer scienceTKGeneral MathematicsInterface (computing)General Physics and AstronomyCompressive sensing machine learning non-destructive evaluation structural health monitoring transfer learning ultrasoundMachine learningcomputer.software_genreMachine LearningSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineEngineeringManufacturing and Industrial FacilitiesNon destructiveHumansUltrasonicsFeature databusiness.industryUltrasonic testingGeneral EngineeringBayes TheoremSignal Processing Computer-AssistedArticlesRoboticsData CompressionIdentification (information)Regression AnalysisStructural health monitoringArtificial intelligenceTransfer of learningbusinesscomputerAlgorithmsPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
researchProduct